Insulin-mimetic anti-insulin receptor monoclonal antibodies stimulate receptor kinase activity in intact cells.
نویسندگان
چکیده
In the present studies, nine different monoclonal antibodies to the extracellular domain of the insulin receptor were tested in three different cell types for their ability to stimulate the intrinsic tyrosine kinase activity of the receptor. Previous studies had suggested that several of these monoclonal antibodies stimulate biological responses without stimulating the intrinsic tyrosine kinase activity of the receptor (Hawley, D. M., Maddux, B. A., Patel, R. G., Wong, K. Y., Manula, P. W., Firestone, G. L., Brunetti, A., Verspohl, E., and Goldfine, I. D. (1989) J. Biol. Chem. 264, 2438-2444 and Soos, M. A., O'Brien, R. M., Brindle, N. P. J., Stigter, J. M., Okamoto, A. K., Whittaker, J., and Siddle, K. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 5217-5221). In the present study, a more sensitive assay was utilized, and these same monoclonal antibodies, when added to intact cells, were found to stimulate the phosphotransferase activity of the receptor. This increase in activity was reversed by phosphatase treatment of the receptor. In contrast, monoclonal antibodies which had no insulin-mimetic activities did not stimulate the receptor's kinase activity. In addition, Western blot analyses of lysates with anti-phosphotyrosine antibodies showed that insulin-mimetic, but not non-insulin-mimetic antibodies, stimulated tyrosine phosphorylation of the receptor as well as an endogenous substrate (phosphoprotein Mr = 160,000). Finally, these antibodies were found to stimulate the tyrosine phosphorylation of another endogenous substrate of the insulin receptor kinase, the type I phosphatidylinositol kinase. These studies support the hypothesis that monoclonal antibodies, like insulin, stimulate biological responses via their ability to stimulate the tyrosine kinase activity of the receptor.
منابع مشابه
Insulin receptor monoclonal antibodies that mimic insulin action without activating tyrosine kinase.
HTC rat hepatoma cells were transfected with human insulin receptor cDNA to a level of 40,000 receptors/cell. In these cells, as well as in nontransfected cells, insulin stimulated the uptake of alpha-aminoisobutyric acid. Two monoclonal antibodies directed against the human insulin receptor alpha subunit, like insulin, stimulated amino acid uptake in transfected HTC cells, but not in nontransf...
متن کاملIn silico prediction of B cell epitopes of the extracellular domain of insulin-like growth factor-1 receptor
The insulin-like growth factor-1 receptor (IGF-1R) is a transmembrane receptor with tyrosine kinase activity. The receptor plays a critical role in cancer. Using monoclonal antibodies (MAbs) against the IGF-1R, typically blocks ligand binding and enhances down-regulation of the cell-surface IGF-1R. Some MAbs such as cixutumumab are under clinical trial investigation. Targeting multiple distinct...
متن کاملInsulin-mimetic effect of trypsin on the insulin receptor tyrosine kinase in intact adipocytes.
It has previously been demonstrated that the insulin-mimetic agent trypsin stimulates autophosphorylation of purified insulin receptors and activates the insulin receptor tyrosine kinase in vitro. We now report the effects of trypsin on whole cell tyrosine kinase activation and insulin receptor autophosphorylation. Trypsin treatment of intact adipocytes produces a time-dependent stimulation of ...
متن کاملHigh-affinity insulin binding to an atypical insulin-like growth factor-I receptor in human breast cancer cells.
We studied the nature of insulin receptor binding in MCF-7 breast cancer cells. In both intact cells and solubilized receptor preparations, high-affinity insulin binding was seen. However, unlabeled insulin-like growth factor-I (IGF-I) was five-fold more potent in inhibiting 125I-insulin binding than insulin itself. With monoclonal antibodies to the insulin receptor, 30% of 125I-insulin binding...
متن کاملEffect of monoclonal antibodies on human insulin receptor autophosphorylation, negative cooperativity, and down-regulation.
Three major functional characteristics of the insulin receptor are negative cooperativity, down-regulation, and beta-subunit tyrosine kinase activity. To investigate the inter-relationships among these functions we studied four antibodies to the insulin receptor alpha-subunit. These monoclonal antibodies competitively inhibited 125I-insulin binding to the insulin receptor of human IM-9 and HEP-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 265 16 شماره
صفحات -
تاریخ انتشار 1990